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ABSTRACT 

 

We evaluate the probability that an estimated Sharpe ratio exceeds a given threshold in presence 

of non-Normal returns. We show that this new uncertainty-adjusted investment skill metric 

(called Probabilistic Sharpe ratio, or PSR) has a number of important applications: First, it 

allows us to establish the track record length needed for rejecting the hypothesis that a measured 

Sharpe ratio is below a certain threshold with a given confidence level. Second, it models the 

trade-off between track record length and undesirable statistical features (e.g., negative skewness 

with positive excess kurtosis). Third, it explains why track records with those undesirable traits 

would benefit from reporting performance with the highest sampling frequency such that the IID 

assumption is not violated. Fourth, it permits the computation of what we call the Sharpe ratio 

Efficient Frontier (SEF), which lets us optimize a portfolio under non-Normal, leveraged returns 

while incorporating the uncertainty derived from track record length. Results can be validated 

using the Python code in the Appendix. 

 

 

Keywords: Sharpe ratio, Efficient Frontier, IID, Normal distribution, Skewness, Excess Kurtosis, 

track record. 
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1. INTRODUCTION 

Roy (1952) was the first to suggest a risk-reward ratio to evaluate a strategy’s performance. 

Sharpe (1966) applied Roy’s ideas to Markowitz’s mean-variance framework, in what has 

become one of the best known performance evaluation metrics. López de Prado and Peijan 

(2004) showed that the implied assumptions (namely, that returns are independent and 

identically distributed (IID) Normal) may hide substantial drawdown risks, especially in the case 

of hedge fund strategies. 

 

Renowned academics (Sharpe among them
1
) have attempted to persuade the investment 

community against using the Sharpe ratio in breach of its underlying assumptions. 

Notwithstanding its many deficiencies, Sharpe ratio has become the ‘gold standard’ of 

performance evaluation. Sharpe ratios are greatly affected by some of the statistical traits 

inherent to hedge fund strategies in general (and high frequency strategies in particular), like 

non-normality and reduced granularity (due to returns aggregation). As a result, Sharpe ratios 

from these strategies tend to be “inflated”. Ingersoll, Spiegel, Goetzmann and Welch (2007) 

explain that sampling returns more frequently reduces the inflationary effect that some 

manipulation tactics have on the Sharpe ratio. 

 

We accept the futility of restating Sharpe ratio’s deficiencies to investors. Instead, a first goal of 

this paper is to introduce a new measure called Probabilistic Sharpe Ratio (PSR), which corrects 

those inflationary effects. This uncertainty-adjusted Sharpe ratio demands a longer track record 

length and/or sampling frequency when the statistical characteristics of the returns distribution 

would otherwise inflate the Sharpe ratio. That leads us to our second goal, which is to show that 

Sharpe ratio can still evidence skill if we learn to require the proper length for a track record. 

We formally define the concept of Minimum Track Record Length (MinTRL) needed for 

rejecting the null hypothesis of ‘skill beyond a given threshold’ with a given degree of 

confidence. The question of how long should a track record be in order to evidence skill is 

particularly relevant in the context of alternative investments, due to their characteristic non-

Normal returns. Nevertheless, we will discuss the topic of “track record length” from a general 

perspective, making our results applicable to any kind of strategy or investment. 

 

A third goal of this paper is to introduce the concept of Sharpe ratio Efficient Frontier (SEF), 

which permits the selection of optimal portfolios under non-Normal, leveraged returns, while 

taking into account the sample uncertainty associated with track record length. The portfolio 

optimization approach hereby presented differs from other higher-moment methods in that 

skewness and kurtosis are incorporated through the standard deviation of the Sharpe ratio 

estimator. This avoids having to make arbitrary assumptions regarding the relative weightings 

that higher moments have in the utility function. We feel that practitioners will find this approach 

useful, because the Sharpe ratio has become –to a certain extent– the default utility function used 

by investors. SEF can be intuitively explained to investors as the set of portfolios that maximize 

the expected Sharpe ratio for different degrees of confidence. The maximum Sharpe ratio 

portfolio is a member of the SEF, but it may differ from the portfolio that maximizes the PSR. 

While the former portfolio is oblivious to the resulting confidence bands around that maximized 

                                                 
1
 See Sharpe (1975) and Sharpe (1994). Sharpe suggested the name reward-to-variability ratio, another matter on 

which that author’s plead has been dismissed. 
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Sharpe, the latter is the portfolio that maximizes the probability of skill, taking into account the 

impact that non-Normality and track record length have on the Sharpe ratio’s confidence band. 

 

We do not explicitly address the case of serially-conditioned processes. Instead, we rely on 

Mertens (2002), who ‘originally’ assumed IID non-Normal returns. That framework is consistent 

with the scenario that the skill and style of the portfolio manager does not change during the 

observation period. Fortunately, Opdyke (2007) has shown that Mertens’ equation has a limiting 

distribution that is valid under the more general assumption of stationary and ergodic returns, 

and not only IID. Thus, our results are valid under such conditions, beyond the narrower IID 

assumption. 

 

The rest of the paper is organized as follows: Section 2 presents the theoretical framework that 

will allow us to achieve the three stated goals. Section 3 introduces the concept of Probabilistic 

Sharpe Ratio (PSR). Section 4 relates applies this concept to answer the question of what is an 

acceptable track record length for a given confidence level. Section 5 presents numerical 

examples that illuminate how these concepts are interrelated and can be used in practice. Section 

6 applies our methodology to Hedge Fund Research data. Section 7 takes this argument further 

by introducing the concept of Sharpe Ratio Efficient Frontier (SEF). Section 8 outlines the 

conclusions. Mathematical appendices proof statements made in the body of the paper. Results 

can be validated using the Python code in the Appendices 3 and 4. 

 

 

2. THE FRAMEWORK 

We have argued that the Sharpe ratio is a deficient measure of investment skill. In order to 

understand why, we need to review its theoretical foundations, and the implications of its 

assumption of Normal returns. In particular, we will see that non-Normality may increase the 

variance of the Sharpe ratio estimator, therefore reducing our confidence in its point estimate. 

When unaddressed, this means that investors may be comparing Sharpe ratio estimates with 

widely different confidence bands.  

 

2.1. SHARPE RATIO’S POINT ESTIMATE 

Suppose that a strategy’s excess returns (or risk premiums),   , are IID
2
 

 

    (    ) 

 

(1) 
 

where N represents a Normal distribution with mean   and variance   . The purpose of the 

Sharpe ratio (SR) is to evaluate the skills of a particular strategy or investor. 

 

    
 

 
 

(2) 
 

 

                                                 
2
 Even if returns are serially correlated, there may be a sampling frequency for which their autocorrelation becomes 

insignificant. We leave for a future paper the analysis of returns’ serial conditionality under different sampling 

frequencies, and their joint impact on Sharpe ratio estimates. 
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Since     are usually unknown, the true value SR cannot be known for certain. The inevitable 

consequence is that Sharpe ratio calculations may be the subject of substantial estimation errors. 

We will discuss next how to determine them under different sets of assumptions. 

 

2.2. ASSUMING IID NORMAL RETURNS 

Like any estimator, SR has a probability distribution. Following Lo (2002), in this section we 

will derive what this distribution is in the case of IID Normal returns. The Central Limit 

Theorem states that √ ( ̂   )
 
→  (    ) and √ ( ̂    )

 
→  (     ), where 

 
→ denotes 

asymptotic convergence. Let   (
 
 
) be the column-vector of the Normal distribution’s 

parameters, with an estimate in  ̂  (
 ̂
 ̂
). For IID returns, √ ( ̂   )

 
→  (    ), where 

   ( 
  
    ) is the variance of the estimation error on  . 

 

Let’s denote   ̂   ( ̂), where  ( ) is the function that estimates SR, and apply the delta 

method (see White (1984)), 

 

 √ ( ( ̂)   ( ))
 
→  (    ) 

   
  

  
  

  

   
 

(3) 
 

 

   is the variance of the  ( ) function. Because 
  

    (

 

 

 
 ̂

   

), we obtain that    (
  

  
)
 

   

(
  

   )
 

   . This means that the asymptotic distribution of   ̂ reduces to 

 

 

(  ̂    )
 
→ (  

  
 
    

 
) 

(4) 
 

 

If q is the number of observations per year, the point estimate of the annualized Sharpe ratio is 

 

   ̂ 

 
→ (√       ) (5) 

 

 

Under the assumption of Normal IID returns, the SR estimator follows a Normal distribution 

with mean SR and a standard deviation that depends on the very value of SR and the number of 

observations. This is an interesting result, because it tells us that, ceteris paribus, in general we 

would prefer investments with a longer track record. That is hardly surprising, and is common 

practice in the hedge fund industry to ask for track records greater than 3 or more years of 

monthly returns. Furthermore, Eq. (4) tells us how a greater n exactly impacts the variance of the 

SR estimate, which is an idea we will expand in later sections. 
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2.3. SHARPE RATIO AND NON-NORMALITY 

The SR does not characterize a distribution of returns, in the sense that there are infinite Normal 

distributions that deliver any given SR. This is easy to see in Eq. (2), as merely re-scaling the 

returns series will yield the same SR, even though the returns come from Normal distributions 

with different parameters. This argument can be generalized to the case of non-Normal 

distributions, with the aggravation that, in the non-Normal case, the number of degrees of 

freedom is even greater (distributions with entirely different first four moments may still yield 

the same SR). 

 

Appendix 2 demonstrates that a simple mixture of two Normal distributions produces infinite 

combinations of skewness and kurtosis with equal SR. More precisely, the proof states that, in 

the most general cases, there exists a p value able to mix any two given Normal distributions and 

deliver a targeted SR.
3
 The conclusion is that, however high a SR might be, it does not preclude 

the risk of severe losses. To understand this fact, consider the following combinations of 

parameters: 

 

      
 (  

   

   
)     

   

 
        (  

 

 
) (  

   

   
)    

 
   

   
 

   
  

 

 
      

  
 

 
  

        

(6) 
 

 

For   
        (  

 

 
) and    (  

 

 
)       

 , each combination implies a non-

Normal mixture. For k=20 and (  
    

    
    

 )  (        ), there are 160,000 combinations of 
(           ), but as determined in Appendix 2, only for 96,551 of them there exists a    such 

that      . Figure 1 plots the resulting combinations of skewness and kurtosis for mixtures of 

Normal distributions with the same Sharpe ratio (     ). An interesting feature of modeling 

non-Normality through a mixture of Normal distributions is the trade-off that exists between 

skewness and kurtosis. In this analytical framework, the greater the absolute value of skewness 

is, the greater the kurtosis tends to be. López de Prado and Peijan (2004) find empirical evidence 

of this trade-off in their study of returns distributions of hedge fund styles. A mixture of Normal 

distributions seems to accurately capture this feature in the data. 

 

[FIGURE 1 HERE] 

 

The above set includes combinations as different as (             )  (                    ) 

and (             )  (                              ). Figure 2 displays the probability 

density functions of these two distributions, which have the same Sharpe ratio (     ). The 

continuous line represents the mixture of two Normal distributions, and the dashed line the 

Normal distribution with the same mean and standard deviation as the mixture. The mixture on 

the right side incorporates a 1.5% probability that a return is drawn from a distribution with 

mean -5 and a standard deviation of 5 (a catastrophic outcome). 

 

                                                 
3
 Readers interested in the estimation of the parameters that characterize a mixture of 2 Gaussians will find an 

efficient algorithm in López de Prado and Foreman (2011). 
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[FIGURE 2 HERE] 

 

Consequently, for a risk averse investor, SR does not provide a complete ranking of preferences, 

unless non-Normality is taken into account. But, how accurately can skewness and kurtosis be 

estimated from this set of mixtures? In order to answer that question, for each of the 96,551 

mixtures included in the above set we have generated a random sample of 1,000 observations 

(roughly 4 years of daily observations), estimated the first 4 moments on each random sample 

and compared those estimates with the true mixture’s moments (see Eqs. (26)-(35)). Figures 3 (a-

d) show that the estimation error is relatively small when moments adopt values within 

reasonable ranges, particularly for the first 3 moments. 

 

[FIGURE 3 HERE] 

 

Figure 4 reports the results of fitting the two specifications in Eq. (7) on the estimation errors (er) 

and their squares (   ) for moments m=1,…,4. 

 

                       
     

   
                    

    
 

(7) 
 

 

where     ,     ,    
 [   ] 

   is skewness, and    
 [   ] 

   is kurtosis. 

 

[FIGURE 4 HERE] 

 

Consistent with the visual evidence in Figure 3, Figure 4 shows that the estimation error of the 

mean is not a function of the mean’s value (see er_Prob column with prob values at levels 

usually rejected). The standard deviation’s estimator is biased towards underestimating risks (the 

intercept’s er_Prob is at levels at which we would typically reject the null hypothesis of 

unbiasness), but at least the estimation error does not seem affected by the scale of the true 

standard deviation. In the case of the third and fourth moments’ estimation errors, we find bias 

and scale effects of first and second degree. This is evidence that estimating moments beyond the 

third, and particularly the fourth moment, requires longer sample lengths than estimating only 

the first two moments. We will retake this point in Section 4. 

 

2.4. INCORPORATING NON-NORMALITY 

The previous section argued that non-Normal distributions with very diverse risk profiles can all 

have the same SR. In this section we will discuss the key fact that, although skewness and 

kurtosis does not affect the point estimate of SR, it greatly impacts its confidence bands, and 

consequently its statistical significance. This fact of course has dreadful implications when, as it 

is customary, point estimates of SR are used to rank investments. 

 

Mertens (2002) concludes that the Normality assumption on returns could be dropped, and still 

the estimated Sharpe ratio would follow a Normal distribution with parameters 
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(  ̂    )
 
→ (  

  
 
          

    
    

 
) 

(8) 
 

 

The good news is, SR follows a Normal distribution even if the returns do not. The bad news is, 

although most investors prefer to work in a mean-variance framework, they need to take non-

Normality into account (in addition, of course, to sample length). Figure 5 illustrates how 

combinations of skewness and kurtosis impact the standard deviation of the SR estimator. This 

has the serious implication that non-Normal distributions may severely inflate the SR estimate, to 

the point that having a high SR may not be sufficient warranty of its statistical significance. 

 

[FIGURE 5 HERE] 

 

Christie (2005) uses a GMM approach to derive a limiting distribution that only assumes 

stationary and ergodic returns, thus allowing for time-varying conditional volatilities, serial 

correlation and even non-IID returns. Surprisingly, Opdyke (2007) proved that the expressions in 

Mertens (2002) and Christie (2005) are in fact identical. To Dr. Mertens’ credit, his result 

appears to be valid under the more general assumption of stationary and ergodic returns, and not 

only IID. 

 

2.5. CONFIDENCE BAND 

We have mentioned that skewness and kurtosis will affect the confidence band around our 

estimate of SR, but we did not explicitly derive its expression. After some algebra, Eq.(8) gives 

the estimated standard deviation of   ̂ as  ̂  ̂  √   ̂   ̂ 
 ̂   

 
  ̂ 

   
, where     is due to Bessel’s 

correction. The true value SR is bounded by our   ̂ estimate with a significance level   

 

     [   (  ̂     ⁄  ̂  ̂    ̂     ⁄  ̂  ̂)]     
 

(9) 
 

 

In general it is misleading to judge strategies’ performance by merely comparing their respective 

point estimates of   ̂, without considering the estimation errors involved in each calculation. 

Instead, we could compare   ̂’s translation in probabilistic terms, which we will define next. 

 

 

3. PROBABILISTIC SHARPE RATIO (PSR) 

Now that we have derived an expression for the confidence bands of SR, we are ready to aim for 

the first goal stated in the Introduction: Provide a de-inflated estimate of SR. Given a predefined 

benchmark
4
 Sharpe ratio (   ), the observed Sharpe ratio   ̂ can be expressed in probabilistic 

terms as 

 

                                                 
4
 This could be set to a default value of zero (i.e., comparing against no investment skill). 
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   ̂(   )      [  ̂     ]    ∫     (  ̂)     ̂

   

  

 
(10) 

 

 

We ask the question, what is the probability that   ̂ is greater than a hypothetical    ? Applying 

what we have learnt in the previous sections, we propose 

 

 

   ̂(   )   

[
 
 
 

(  ̂     )√   

√   ̂   ̂  
 ̂   

   ̂ 
]
 
 
 

 
(11) 

 

 

where Z is the cdf of the Standard Normal distribution. For a given    ,    ̂ increases with 

greater   ̂ (in the original sampling frequency, i.e. non-annualized), or longer track records (n), 

or positively skewed returns ( ̂ ), but it decreases with fatter tails ( ̂ ). Because hedge fund 

strategies are usually characterized by negative skewness and fat tails (Brooks and Kat (2002), 

López de Prado and Rodrigo (2004)), Sharpe ratios tend to be “inflated”.    ̂(   ) takes those 

characteristics into account and delivers a corrected, atemporal
5
 measure of performance 

expressed in terms of probability of skill.
6
 It is not unusual to find strategies with irregular 

trading frequencies, such as weekly strategies that may not trade for a month. This poses a 

problem when computing an annualized Sharpe ratio, and there is no consensus as how skill 

should be measured in the context of irregular bets. Because PSR measures skill in probabilistic 

terms, it is invariant to calendar conventions. All calculations are done in the original frequency 

of the data, and there is no annualization. This is another argument for preferring PSR to 

traditional annualized SR readings in the context of strategies with irregular frequencies. 

 

Section 2.3 made the point that estimates of skewness and kurtosis may incorporate significant 

errors. If the researcher believes that this is the case with their estimated  ̂  and  ̂ , we 

recommend that a lower bound is inputted in place of  ̂  and an upper bound in place of  ̂  in Eq. 

(8), for a certain confidence level. However, if these estimates are deemed to be reasonably 

accurate, this ‘worst case scenario analysis’ is not needed. 

 

An example will clarify how PSR reveals information otherwise dismissed by SR. Suppose that a 

hedge fund offers you the statistics displayed in Figure 6, based on a monthly track record over 

the last two years. 

 

[FIGURE 6 HERE] 

 

[FIGURE 7 HERE] 

 

At first sight, an annualized Sharpe ratio of 1.59 over the last two years seems high enough to 

reject the hypothesis that it has been achieved by sheer luck. The question is, “how inflated is 

this annualized Sharpe ratio due to the track record’s non-normality, length and sampling 

                                                 
5
   ̂ and     are expressed in the same frequency as the returns time series. 

6
 After applying PSR on his track record, a hedge fund manager suggested this measure to be named “The Sharpe 

razor” [sic]. 
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frequency?” Let’s start by comparing this performance with the skill-less benchmark (     ) 

while assuming Normality ( ̂     ̂   ). The original sampling frequency is monthly, and so 

the estimate that goes into Eq. (11) is   ̂       . This yields a reassuring    ̂( )       . 

However, when we incorporate the skewness ( ̂        ) and kurtosis information ( ̂  
      ), then    ̂( )       ! At a 95% confidence level, we would accept this track record in 

the first instance, but could not reject the hypothesis that this Sharpe ratio is skill-less in the 

second instance. 

 

Figure 7 illustrates what is going on. The dashed black line is the Normal pdf that matches the 

Mean and StDev values in Figure 6. The black line represents the mixture of two Normal 

distributions that matches all four moments in Table 1 (        ,         ,         , 

        , p=0.15). Clearly, it is a mistake to assume normality, as that would ignore critical 

information regarding the hedge fund’s loss potential. 

 

What the annualized Sharpe ratio of 1.59 was hiding was a relatively small probability (15%) of 

a return drawn from an adverse distribution (a negative multiple of the mixed distribution’s 

mode). This is generally the case in track records with negative skewness and positive excess 

kurtosis, and it is consistent with the signs of  ̂  and  ̂  in Eq. (11). 

 

This is not to say that a track record of 1.59 Sharpe ratio is worthless. As a matter of fact, should 

we have 3 years instead of 2,    ̂( )       , enough to reject the hypothesis of skill-less 

performance even after considering the first four moments. In other words, a longer track record 

may be able to compensate for the uncertainty introduced by non-Normal returns. The next 

Section quantifies that “compensation effect” between non-Normality and the track record’s 

length. 

 

PSR takes into account the statistical accuracy of the point estimate of SR for different levels of 

skewness and kurtosis (and length of track record). In this sense, it incorporates information 

regarding the non-Normality of the returns. However, we caution the reader that PSR does not, 

and does not attempt to, incorporate the effect of higher moments on preferences. The investor 

still only cares about mean and variance, but she is rightly worried that in the presence of 

skewness and kurtosis –about which she does not care per se– her estimates may be inaccurate 

and ‘flattering’. 

 

 

4. TRACK RECORD LENGTH 

Understanding that Sharpe ratio estimations are subject to significant errors begs the question: 

“How long should a track record be in order to have statistical confidence that its Sharpe ratio 

is above a given threshold?” In mathematical terms, for   ̂     , this is equivalent to asking  

 

 { |   ̂(   )     } (12) 
 

 

with minimum track record length (MinTRL) in 
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            [   ̂   ̂  

 ̂   

 
  ̂ ] (

  

  ̂     
)
 

 
(13) 

 

 

And again we observe that a longer track record will be required the smaller   ̂ is, or the more 

negatively skewed returns are, or the greater the fat tails, or the greater our required level of 

confidence. A first practical implication is that, if a track record is shorter than MinTRL, we do 

not have enough confidence that the observed   ̂ is above the designated threshold    . A 

second practical implication is that a portfolio manager will be penalized because of her non-

Normal returns, however she can regain the investor’s confidence over time (by extending the 

length of her track record). 

 

It is important to note that MinTRL is expressed in terms of number of observations, not annual 

or calendar terms. A note of caution is appropriate at this point: Eqs. (11) and (13) are built upon 

Eq. (8), which applies to an asymptotic distribution. CLT is typically assumed to hold for 

samples in excess of 30 observations (Hogg and Tanis (1996)). So even though a MinTRL may 

demand less than 2.5 years of monthly data, or 0.5769 years of weekly data, or 0.119 years of 

daily data, etc. the moments inputted in Eq. (13) must be computed on longer series for CLT to 

hold. This is consistent with practitioners’ standard practice of requiring similar lengths during 

the due diligence process. 

 

 

5. NUMERICAL EXAMPLES 

Everything we have learnt in the previous sections can be illustrated in a few practical examples. 

Figure 8 displays the minimum track record lengths (MinTRL) in years required for various 

combinations of measured   ̂ (rows) and benchmarked     (columns) at a 95% confidence 

level, based upon daily IID Normal returns. For example, a 2.73 years track record is required for 

an annualized Sharpe of 2 to be considered greater than 1 at a 95% confidence level. 

 

[FIGURE 8 HERE] 

 

We ask, what would the MinTRL be for a weekly strategy with also an observed annualized 

Sharpe of 2? Figure 9 shows that, if we move to weekly IID Normal returns, the requirement is 

2.83 years of track record length, a 3.7% increase. 

 

[FIGURE 9 HERE] 

 

Figure 10 indicates that the track record length needed increases to 3.24 years if instead we work 

with monthly IID Normal returns, an 18.7% increase compared to daily IID Normal returns. This 

increase in MinTRL occurs despite the fact that both strategies have the same observed 

annualized Sharpe ratio of 2, and it is purely caused by a decrease in frequency. 

 

[FIGURE 10 HERE] 

 

Let’s stay with monthly returns. Brooks and Kat (2002) report that the HFR Aggregate Hedge 

Fund returns index exhibits  ̂        and  ̂      . In these circumstances, Figure 11 tells 

us that the track record should now be 4.99 years long. This is 54% longer than what we required 
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with Normal monthly returns, and 82.8% longer than what was needed with Normal daily 

returns. 

 

[FIGURE 11 HERE] 

 

 

6. SKILLFUL HEDGE FUND STYLES 

We are now ready to run our model on real data. Figure 12 applies our methodology on HFR 

Monthly indices from January 1
st
 2000 to May 1

st
 2011 (134 monthly observations, or 11.167 

years). MinTRL is expressed in years, subject to a confidence level of 95%. 

 

A PSR(0) > 0.95 indicates that a SR is greater than 0 with a confidence level of 0.95. Similarly, a 

PSR(0.5) > 0.95 means that a SR is greater that 0.5 (annualized) with a confidence level of 0.95. 

The Probabilistic Sharpe ratio has taken into account multiple statistical features present in the 

track record, such as its length, frequency and deviations from Normality (skewness, kurtosis). 

 

Because our sample consists of 11.167 years of monthly observations, a PSR(0) > 0.95 is 

consistent with a MinTRL(0) < 11.167 at 95% confidence, and a PSR(0.5) > 0.95 is consistent 

with a MinTRL(0.5) < 11.167 at 95% confidence. Our calculations show that most hedge fund 

styles evidence some level of skill, i.e. their SR are above the zero benchmark. However, looking 

at PSR(0.5), we observe that only 9 style indices substantiate investment skill over an annualized 

Sharpe ratio of 0.5 at a 95% confidence level: 

 

 Distressed Securities 

 Equity Market Neutral 

 Event Driven 

 Fixed Asset-Backed 

 Macro 

 Market Defensive 

 Mortgage Arbitrage 

 Relative Value 

 Systematic Diversified 

 

[FIGURE 12 HERE] 

 

This is not to say that only hedge funds practicing the 9 styles listed above should be considered. 

Our analysis has been performed on indices, not specific track records. However, it could be 

argued that special care should be taken when analyzing performance from styles other than the 

9 mentioned. We would have liked to complete this analysis with a test of structural breaks, 

however the amount and quality of data does not allow for meaningful estimates. 
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7. THE SHARPE RATIO EFFICIENT FRONTIER 

PSR evaluates the performance of an individual investment in terms of an uncertainty-adjusted 

SR. It seems natural to extend this argument to a portfolio optimization or capital allocation 

context. Rather than a mean-variance frontier of portfolio returns on capital, we will build a 

mean-variance frontier of portfolio returns on risk. 

 

Following Markowitz (1952), a portfolio w belongs to the Efficient Frontier if it delivers 

maximum expected excess return on capital ( [  ]) subject to the level of uncertainty 

surrounding those portfolios’ excess returns ( ̂(  )). 

 

   
 

    [  ]| ̂(  )     (14) 
 

 

Similarly, we define what we denote the Sharpe ratio Efficient Frontier (SEF) as the set of 

portfolios { } that deliver the highest expected excess return on risk (as expressed by their 

Sharpe ratios) subject to the level of uncertainty surrounding those portfolios’ excess returns on 

risk (the standard deviation of the Sharpe ratio). 

 

   
 

     ̂(  )| ̂  ̂(  )     (15) 
 

 

But why would we compute an efficient frontier of Sharpe ratios while accepting that returns (r) 

are non-Normal? Because a great majority of investors use the SR as a proxy for their utility 

function. Even though they do not care about higher moments per se, they must de-inflate their 

estimates of SR (a mean-variance metric) using the third and fourth moments. A number of 

additional reasons make this analysis interesting: 

 

1. SEF deals with efficiency within the return on risk (or Sharpe ratio) space rather than 

return on capital. Unlike returns on capital, Sharpe ratios are invariant to leverage. 

2. Even if returns are non-Normally distributed, 

a. the distribution of Sharpe ratios follows a Normal, therefore an efficient frontier–

style of analysis still makes sense. 

b. as long as the process is IID, the cumulative returns distribution asymptotically 

converges to Normal, due to the Central Limit Theorem. 

3. Performance manipulation methods like those discussed by Ingersoll, Spiegel, 

Goetzmann and Welch (2007) generally attempt to inflate the Sharpe ratio by distorting 

the returns distribution. As SEF considers higher moments, it adjusts for such 

manipulation. 

4. It is a second degree of uncertainty analysis. The standard (Markowitz) portfolio 

selection framework measures uncertainty in terms of standard deviation on returns. In 

the case of SEF, uncertainty is measured on a function (  ̂(  )) that already 

incorporates an uncertainty estimate ( ̂(  )). Like in Black-Litterman (1992), this 

approach does not assume perfect knowledge of the mean-variance estimates, and deals 

with uncertainty in the model’s input variables. This in turn increases the robustness of 

the solution, which contrasts with the instability of mean-variance optimization (see Best 

and Grauger (1991)). 
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5. Computing the SEF will allow us to identify the portfolio that delivers the highest PSR 

for any given     threshold, thus dealing with non-Normality and sample uncertainty due 

to track record length in the context of portfolio selection. From Eq. (11), the highest PSR 

portfolio is the one such that 

 

 
      

 
   
  ̂(  )

 ̂  ̂(  )
       

 
   

  ̂(  )√   

√   ̂ (  )  ̂(  )  
 ̂ (  )   

   ̂(  )  

(16) 
 

 

A numerical example will clarify this new analytical framework. There exist 43,758 fully 

invested long portfolios that are linear combinations of the 9 HFR indices identified in the 

previous section, with weightings 

 

    
 

  
                         

∑  

 

   

   

(17) 
 

 

Because non-Normality and sample length impact our confidence on each portfolio’s risk-

adjusted return, selecting the highest Sharpe ratio portfolio is suboptimal. This is illustrated in 

Figure 13, where the highest SR portfolio (right end of the SEF) comes at the expense of 

substantial uncertainty with regards that estimate, since ( ̂  ̂(  )   ̂(  ))  (           ). 

The portfolio that delivers the highest PSR is indeed quite different, as marked by the encircled 

cross (( ̂  ̂(  )   ̂(  ))  (           )). Recall that the x-axis in this figure does not 

represent the risk associated with an investment, but the statistical uncertainty surrounding our 

estimation of SR. 

 

[FIGURE 13 HERE] 

 

Figure 14 illustrates how the composition of the SEF evolves as  ̂  ̂(  ) increases. The vertical 

line at  ̂  ̂(  )        indicates the composition of the highest PSR portfolio, while the vertical 

line at  ̂  ̂(  )        gives the composition of the highest SR portfolio. The transition across 

different regions of the SEF is very gradual, as a consequence of the robustness of this approach. 

 

[FIGURE 14 HERE] 

 

Figure 15 shows why the Max PSR solution is preferable: Although it delivers a lower Sharpe 

ratio than the Max SR portfolio (0.708 vs. 0.818 in monthly terms), its better diversified 

allocations allow for a much greater confidence (0.103 vs. 0.155 standard deviations). Max PSR 

invests in 5 styles, and the largest holding is 30%, compared to the 4 styles and 50% maximum 

holding of the Max SR portfolio. 

 

[FIGURE 15 HERE] 
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The Max PSR portfolio displays better statistical properties than the Max SR portfolio, as 

presented in Figure 16: Max PSR is very close to Normal (almost null skewness and kurtosis 

close to 3,            ), while the Max SR portfolio features a left fat-tail (         ). A 

risk averse investor should not accept a 17.4% probability of returns being drawn from an 

adverse distribution in exchange for aiming at a slightly higher Sharpe ratio (Figures 17-18). 

 

[FIGURE 16 HERE] 

 

[FIGURE 17 HERE] 

 

[FIGURE 18 HERE] 

 

In other words, taking into account higher moments has allowed us to naturally find a better 

balanced portfolio that is optimal in terms of uncertainty-adjusted Sharpe ratio. We say 

“naturally” because this result is achieved without requiring constraints on the maximum 

allocation permitted per holding. The reason is, PSR recognizes that concentrating risk increases 

the probability of catastrophic outcomes, thus it penalizes such concentration. 

 

 

8. CONCLUSIONS 

A probabilistic translation of Sharpe ratio, called PSR, is proposed to account for estimation 

errors in an IID non-Normal framework. When assessing Sharpe ratio’s ability to evaluate skill, 

we find that a longer track record may be able to compensate for certain statistical shortcomings 

of the returns probability distribution. Stated differently, despite Sharpe ratio’s well-documented 

deficiencies, it can still provide evidence of investment skill, as long as the user learns to require 

the proper track record length. 

 

Even under the assumption of IID returns, the track record length required to exhibit skill is 

greatly affected by the asymmetry and kurtosis of the returns distribution. A typical hedge fund’s 

track record exhibits negative skewness and positive excess kurtosis, which has the effect of 

“inflating” its Sharpe ratio. One solution is to compensate for such deficiencies with a longer 

track record. When that is not possible, a viable option may be to provide returns with the 

highest sampling frequency such that the IID assumption is not violated. The reason is, for 

negatively skewed and fat-tailed returns distributions, the number of years required may in fact 

be lowered as the sampling frequency increases. This has led us to affirm that “badly behaved” 

returns distributions have the most to gain from offering the greatest transparency possible, in the 

form of higher data granularity. 

 

We present empirical evidence that, despite the high Sharpe ratios publicized for several hedge 

fund styles, in many cases they may not be high enough to indicate statistically significant 

investment skill beyond a moderate annual Sharpe ratio of 0.5 for the analyzed period, 

confidence level and track record length. 

 

Finally, we discuss the implications that this analysis has in the context of capital allocation. 

Because non-Normality, leverage and track record length impact our confidence on each 

portfolio’s risk-adjusted return, selecting the highest Sharpe ratio portfolio is suboptimal. We 
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develop a new analytical framework, called the Sharpe ratio Efficient Frontier (SEF), and find 

that the portfolio of hedge fund indices that maximizes Sharpe ratio can be very different from 

the portfolio that delivers the highest PSR. Maximizing for PSR leads to better diversified and 

more balanced hedge fund allocations compared to the concentrated outcomes of Sharpe ratio 

maximization. 
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APPENDICES 

 

A.1. HIGHER MOMENTS OF A MIXTURE OF m NORMAL DISTRIBUTIONS 

Let z be a random variable distributed as a standard normal,    (   ). Then,     
    (    ), with characteristic function: 
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Let r be a random variable distributed as a mixture of m normal distributions, 

   (                       ), with ∑   
 
     . Then: 
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The k
th

 moment centered about zero of any random variable x can be computed as: 
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In the case of r, the first 5 moments centered about zero can be computed as indicated above, 

leading to the following results: 
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The first 5 central moments about the mean are computed by applying Newton's binomium: 
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A.2. TARGETING SHARPE RATIO THROUGH A MIXTURE OF TWO NORMAL 

DISTRIBUTIONS 

Suppose that    (                 ). We ask for what value p the Mixture of two 

Normal distributions is such that 

 

  [ ]

√ [   [ ]]
 
     (32) 

 

 

where     is a targeted Sharpe ratio. Setting     implies that p will now be a function of the 

other parameters,    (               ). In this section we will derive that function f. 

 

From Eq. (32), ( [ ])       [   [ ]]
 
. Applying Eq. (28), this expression simplifies into 
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From Eq. (21) and Eq. (22), 
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Let     
    

        and     
 

    . Then, Eq. (33) can be rewritten as 
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which can be reduced into 
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For     ,     (       
 )    

    
    

    
 ,     

 (   )    
 , Eq. (35) leads to 

the monic quadratic equation 
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with solution in 
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where 
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Let’s discuss now the condition of existence of the solution: In order to be a probability, 

solutions with an imaginary part must be discarded, which leads to the condition that 

 

        (38) 
 

 

Furthermore, because in Eq. (33) we squared both sides of the equality,    could deliver 
 [ ]

√ [   [ ]]
 
     . So a second condition comes with selecting the root    such that 
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Finally, in order to have       , it is necessary that either 

 

 
  

  
     

  

  
 

or 
  

  
     

  

   

(40) 

 

 

This result allows us to simulate a wide variety of non-Normal distributions delivering the same 

targeted Sharpe ratio (   ). 
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A.3. IMPLEMENTATION OF PSR STATISTICS 

PSR and MinTRL calculations are implemented in the following code. The input parameters are 

set to replicate the result obtained in Figure 11 (  ̂  
 

√  
,  ̂       ,  ̂      ,     

 

√  
, 

where √   factor recovers the monthly SR estimates). Then,       (    )         months, 

or approx. 4.99 years. This result is corroborated by computing the PSR with a sample length of 

59.895, which gives value of    (
 

√  
)      . 

 
#!/usr/bin/env python 

# PSR class for computing the Probabilistic Sharpe Ratio 

# On 20120502 by MLdP <lopezdeprado@lbl.gov> 

 

from scipy.stats import norm  

#------------------------------------------- 

# PSR class 

class PSR: 

    def __init__(self,stats,sr_ref,obs,prob): 

        self.PSR=0 

        self.minTRL=0 

        self.stats=stats 

        self.sr_ref=sr_ref 

        self.obs=obs 

        self.prob=prob 

#------------------------------------------- 

    def set_PSR(self,moments): 

        stats=self.stats[:moments]+[0 for i in \ 

            range(len(self.stats)-moments)] 

        sr=self.stats[0]/self.stats[1] 

        self.PSR=norm.cdf((sr-self.sr_ref)*(self.obs-1)**0.5/ \ 

            (1-sr*stats[2]+sr**2*(stats[3]-1)/4.)**0.5) 

#------------------------------------------- 

    def set_TRL(self,moments): 

        stats=self.stats[:moments]+[0 for i in \ 

            range(len(self.stats)-moments)] 

        sr=self.stats[0]/self.stats[1] 

        self.minTRL=1+(1-stats[2]*sr+(stats[3]-1)/4.*sr**2)* \ 

            (norm.ppf(self.prob)/(sr-self.sr_ref))**2 

#------------------------------------------- 

    def get_PSR(self,moments): 

        self.set_PSR(moments) 

        return self.PSR 

#------------------------------------------- 

    def get_TRL(self,moments): 

        self.set_TRL(moments) 

        return self.minTRL 

#------------------------------------------- 

#------------------------------------------- 

# Main function 

def main(): 

    #1) Inputs (stats on excess returns) 

    stats=[2,12**0.5,-0.72,5.78]  #non-annualized stats 

    sr_ref=1/12**0.5  #reference Sharpe ratio (non-annualized) 

    obs=59.895 

    prob=0.95 
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    #2) Create class 

    psr=PSR(stats,sr_ref,obs,prob) 

     

    #3) Compute and report values 

    print 'PSR(2m,3m,4m):',[psr.get_PSR(i) for i in \ 

        range(2,5,1)] 

    print 'minTRL(2m,3m,4m):',[psr.get_TRL(i) for i in \ 

        range(2,5,1)] 

#------------------------------------------- 

# Boilerplate 

if __name__=='__main__': main() 

 

 

 

A.4. COMPUTING THE PSR OPTIMAL PORTFOLIO 

A.4.1. TAYLOR’S EXPANSION 

We would like to find the vector of weights   that maximize the expression 
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where   ∑    ̃ 
 
    is the return of the portfolio with weightings   (of dimension I),   

∑    ̃ 
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    is the mean portfolio return,   √ [(   ) ] its standard deviation, 

   
 [(   ) ]

   its skewness,    
 [(   ) ]

   its kurtosis and    
 

 
 its Sharpe ratio. Because  

   ̂(   )   [  ̂] is a monotonic increasing function of   ̂, it suffices to compute the vector   

that maximizes   ̂. This optimal vector is invariant to the value adopted by the parameter    . 

 

A second degree Taylor expansion of the    ̂ function takes the form: 
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So we need to compute an analytical expression for the first and second partial derivatives. 
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A.4.2. FIRST DERIVATIVE 

We would like to compute the derivative of the expression   ̂  
  ̂    

 ̂  
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This requires us to compute 
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We are still missing 
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Since we are working with a finite sample, for      , 
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and 
   [(   ) ]

   
    for    . 

 

A.4.3. SECOND DERIVATIVE 

Following up with the previous results, we would like to compute 
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So we still need to calculate the expressions 
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which requires us to derive 
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A.4.4. STEP SIZE 

Finally, assuming ∑
 

  

    ̂(  )

   
 

 
   (   )

   , we can replace these derivatives into Taylor’s 

expansion: 
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Let’s define 
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Then, for     we will choose the smallest step size (to reduce the error due to Taylor’s 

approximation, which grows with |   |): 
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For    , the solution coincides with a first degree Taylor approximation: 
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A.4.5. IMPLEMENTATION OF A PSR PORTFOLIO OPTIMIZATION 

We can use the equations derived earlier to develop a PSR portfolio optimization algorithm. The 

example that follows is coded in Python. It uses a gradient-ascent logic to determine the   that 

maximizes   ̂  
  ̂    

 ̂  

, subject to the condition that ∑      
   , as enunciated in Section 7. 

Gradient-ascent only requires the first derivative, so in this particular implementation we are not 

making use of our calculated 
    ̂

   
 . The solution reported in Section 7 is reached after only 118 

iterations. 

 

The user can specify boundary conditions using the variable bounds, in the main() function. By 

default, weights are set to be bounded between 0 and 1.  

 
#!/usr/bin/env python 

# PSR class for Portfolio Optimization 

# On 20120502 by MLdP <lopezdeprado@lbl.gov> 

 

import numpy as np 

#------------------------------------------- 

#------------------------------------------- 

class PSR_Opt: 

    def __init__(self,series,seed,delta,maxIter,bounds=None): 

        # Construct the object 

        self.series,self.w,self.delta=series,seed,delta 

        self.z,self.d1Z=None,[None for i in range(series.shape[1])] 

        self.maxIter,self.iter,self.obs=maxIter,0,series.shape[0] 

        if len(bounds)==None or seed.shape[0]!=len(bounds): 

            self.bounds=[(0,1) for i in seed] 
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        else: 

            self.bounds=bounds 

#------------------------------------------- 

    def optimize(self): 

        # Optimize weights 

        mean=[self.get_Moments(self.series[:,i],1) for i in range(self.series.shape[1])] 

        w=np.array(self.w) 

        # Compute derivatives 

        while True: 

            if self.iter==self.maxIter:break 

            # Compute gradient 

            d1Z,z=self.get_d1Zs(mean,w) 

            # Evaluate result 

            if z>self.z and self.checkBounds(w)==True: 

                # Store new local optimum 

                self.z,self.d1Z=z,d1Z 

                self.w=np.array(w) 

            # Find direction and normalize 

            self.iter+=1 

            w=self.stepSize(w,d1Z) 

            if w==None:return 

        return 

#------------------------------------------- 

    def checkBounds(self,w): 

        # Check that boundary conditions are satisfied 

        flag=True 

        for i in range(w.shape[0]): 

            if w[i,0]<self.bounds[i][0]:flag=False 

            if w[i,0]>self.bounds[i][1]:flag=False 

        return flag 

#------------------------------------------- 

    def stepSize(self,w,d1Z): 

        # Determine step size for next iteration 

        x={} 

        for i in range(len(d1Z)): 

            if d1Z[i]!=0:x[abs(d1Z[i])]=i 

        if len(x)==0:return 

        index=x[max(x)] 

        w[index,0]+=self.delta/d1Z[index] 

        w/=sum(w) 

        return w 

#------------------------------------------- 

    def get_d1Zs(self,mean,w): 

        # First order derivatives of Z 

        d1Z=[0 for i in range(self.series.shape[1])] 

        m=[0 for i in range(4)] 

        series=np.dot(self.series,w)[:,0] 

        m[0]=self.get_Moments(series,1) 

        for i in range(1,4):m[i]=self.get_Moments(series,i+1,m[0]) 

        stats=self.get_Stats(m) 

        meanSR,sigmaSR=self.get_SR(stats,self.obs) 

        for i in range(self.series.shape[1]): 

            d1Z[i]=self.get_d1Z(stats,m,meanSR,sigmaSR,mean,w,i) 

        return d1Z,meanSR/sigmaSR 

#------------------------------------------- 

    def get_d1Z(self,stats,m,meanSR,sigmaSR,mean,w,index): 
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        # First order derivatives of Z with respect to index 

        d1Mu=self.get_d1Mu(mean,index) 

        d1Sigma=self.get_d1Sigma(stats[1],mean,w,index) 

        d1Skew=self.get_d1Skew(d1Sigma,stats[1],mean,w,index,m[2]) 

        d1Kurt=self.get_d1Kurt(d1Sigma,stats[1],mean,w,index,m[3]) 

        d1meanSR=(d1Mu*stats[1]-d1Sigma*stats[0])/stats[1]**2 

        d1sigmaSR=(d1Kurt*meanSR**2+2*meanSR*d1meanSR*(stats[3]-1))/4 

        d1sigmaSR-=d1Skew*meanSR+d1meanSR*stats[2] 

        d1sigmaSR/=2*sigmaSR*(self.obs-1) 

        d1Z=(d1meanSR*sigmaSR-d1sigmaSR*meanSR)/sigmaSR**2 

        return d1Z 

#------------------------------------------- 

    def get_d1Mu(self,mean,index): 

        # First order derivative of Mu 

        return mean[index] 

#------------------------------------------- 

    def get_d1Sigma(self,sigma,mean,w,index): 

        # First order derivative of Sigma 

        return self.get_dnMoments(mean,w,2,1,index)/(2*sigma) 

#-------------------------------------------     

    def get_d1Skew(self,d1Sigma,sigma,mean,w,index,m3): 

        # First order derivative of Skewness 

        d1Skew=self.get_dnMoments(mean,w,3,1,index)*sigma**3 

        d1Skew-=3*sigma**2*d1Sigma*m3 

        d1Skew/=sigma**6 

        return d1Skew 

#-------------------------------------------     

    def get_d1Kurt(self,d1Sigma,sigma,mean,w,index,m4): 

        # First order derivative of Kurtosis 

        d1Kurt=self.get_dnMoments(mean,w,4,1,index)*sigma**4 

        d1Kurt-=4*sigma**3*d1Sigma*m4 

        d1Kurt/=sigma**8 

        return d1Kurt 

#-------------------------------------------     

    def get_dnMoments(self,mean,w,mOrder,dOrder,index): 

        # Get dOrder derivative on mOrder mean-centered moment with respect to w index 

        x0,sum=1.,0 

        for i in range(dOrder):x0*=(mOrder-i) 

        for i in self.series: 

            x1,x2=0,(i[index]-mean[index])**dOrder 

            for j in range(len(i)):x1+=w[j,0]*(i[j]-mean[j]) 

            sum+=x2*x1**(mOrder-dOrder) 

        return x0*sum/self.obs 

#-------------------------------------------     

    def get_SR(self,stats,n): 

        # Set Z* 

        meanSR=stats[0]/stats[1] 

        sigmaSR=((1-meanSR*stats[2]+meanSR**2*(stats[3]-1)/4.)/(n-1))**.5 

        return meanSR,sigmaSR 

#------------------------------------------- 

    def get_Stats(self,m): 

        # Compute stats 

        return [m[0],m[1]**.5,m[2]/m[1]**(3/2.),m[3]/m[1]**2] 

#------------------------------------------- 

    def get_Moments(self,series,order,mean=0): 

        # Compute a moment 
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        sum=0 

        for i in series:sum+=(i-mean)**order 

        return sum/float(self.obs) 

#------------------------------------------- 

#------------------------------------------- 

def main(): 

    #1) Inputs (path to csv file with returns series) 

    path='H:/ TimeSeries.csv' 

    maxIter=1000 # Maximum number of iterations 

    delta=.005 # Delta Z (attempted gain per interation) 

     

    #2) Load data, set seed 

    series=np.genfromtxt(path,delimiter=',') # load as numpy array 

    seed=np.ones((series.shape[1],1))/series.shape[1] # initialize seed 

    bounds=[(0,1) for i in seed] # min and max boundary per weight 

     

    #3) Create class and solve 

    psrOpt=PSR_Opt(series,seed,delta,maxIter,bounds) 

    psrOpt.optimize() 

     

    #4) Optimize and report optimal portfolio 

    print 'Maximized Z-value: '+str(psrOpt.z) 

    print '# of iterations: '+str(psrOpt.iter) 

    print 'PSR optimal portfolio:' 

    print str(psrOpt.w) 

#------------------------------------------- 

# Boilerplate 

if __name__=='__main__': main() 
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FIGURES 

 

 

 
Figure 1 – Combinations of skewness and kurtosis from Mixtures 

of two Gaussians with the same Sharpe ratio (     ) 

 

 

An infinite number of mixtures of two Gaussians can deliver any given SR, despite of having 

widely different levels of skewness and kurtosis. This is problematic, because high readings of 

SR may come from extremely risky distributions, like combinations on the left side of this figure 

(negative skewness and positive kurtosis). 
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Figure 2(a) – Probability density function for a Mixture of two Gaussians 

with parameters (             )  (                    ) 
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Figure 2(b) – Probability density function for a Mixture of two Gaussians 

with parameters (             )  (                              ) 

 

 

These two distributions were drawn from the combinations plotted in Figure 1. Both have a 

Sharpe ratio of 1, despite of their evidently different risk profile. The dashed black line 

represents the probability distribution function of a Normal distribution fitted of each of these 

mixtures. The variance not only underestimates non-Normal risks, but its own estimator is 

greatly affected by non-Normality. A minimal change in the mixture’s parameters could have a 

great impact on the estimated value of the mixture’s variance. 
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Figure 3(a) – True vs. estimated mean 
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Figure 3(b) – True vs. estimated standard deviation 
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Figure 3(c) – True vs. estimated skewness 
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Figure 3(d) – True vs. estimated kurtosis 

 

Estimations errors increase with higher moments, requiring longer sample sizes. 

 

 

 

  
Figure 4 –Estimation error models for various moments and levels 

 

If we draw samples from random mixtures of two Gaussians, we can study how the estimation 

errors on their moments are affected by the moment’s values. 

 

 

Degree er_δ er_Prob er2_θ er2_Prob Degree er_δ er_Prob er2_θ er2_Prob

0 -0.0016 0.3756 0.0001 0.7863 0 0.0048 0.0134 0.0049 0.0000

1 0.0013 0.3738 -0.0001 0.7877 1 -0.0014 0.3687 0.0017 0.0000

2 -0.0002 0.4007 0.0010 0.0000 2 0.0002 0.4276 0.0000 0.3292

Degree er_δ er_Prob er2_θ er2_Prob Degree er_δ er_Prob er2_θ er2_Prob

0 0.0063 0.0115 0.3421 0.0000 0 0.3532 0.0000 269.3399 0.0000

1 0.0300 0.0000 0.7558 0.0000 1 -0.0342 0.0000 -37.2576 0.0000

2 0.0071 0.0000 0.1979 0.0000 2 0.0005 0.0000 0.2841 0.0000

MEAN STDEV

SKEW KURT adj-R2 er er2

Mean 0.0000 0.1233

StDev 0.0000 0.0063

Skew 0.0685 0.1196

Kurt 0.3937 0.4904
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Figure 5 -    ̂ as a function of (     ), with n=1000, SR=1 

 

The standard deviation of the SR estimator is sensitive to skewness and kurtosis. For SR=1, we 

see that    ̂ is particularly sensitive to skewness, as we could expect from inspecting Eq. (8). 

 

 

 

 
Figure 6 – Hedge fund track record statistics 

 

Stats Values

Mean 0.036

StDev 0.079

Skew -2.448

Kurt 10.164

SR 0.458

Ann. SR 1.585
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Figure 7 – Probability distributions assuming Normality (dashed black line) 

and considering non-Normality (black line) 

 

This mixture of two Gaussians exactly matches the moments reported in Figure 6. The dash line 

shows that a Normal fit severely underestimates the downside risks for this portfolio manager. 

Moreover, there is a significant probability that this portfolio manager may have no investment 

skill, despite of having produced an annualized Sharpe ratio close to 1.6. 

 

 

 
Figure 8 – Minimum track record in years, under daily IID Normal returns 
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Figure 9 – Minimum track record in years, under weekly IID Normal returns 

 

 

 

 

 
Figure 10 – Minimum track record in years, under monthly IID Normal returns 

 

 

 

 
Figure 11 – Minimum track record in years, under monthly IID returns 

with  ̂        and  ̂       
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Figure 12 – Performance analysis on HFR Monthly indices 

 

 

Only a few hedge fund investment styles evidence skill beyond a Sharpe ratio of 0.5 with a 

confidence level of 95%. 

HFR Index Code SR StDev(SR) An. SR Low An. SR PSR(0) PSR(0.5) MinTRL (0) MinTRL (0.5)

Conserv HFRIFOFC Index 0.251 0.116 0.871 0.210 0.985 0.822 6.456 35.243

Conv Arbit HFRICAI Index 0.253 0.124 0.875 0.170 0.979 0.809 7.282 39.246

Dist Secur HFRIDSI Index 0.414 0.116 1.433 0.771 1.000 0.990 2.448 5.661

Divers HFRIFOFD Index 0.208 0.099 0.719 0.158 0.982 0.740 6.841 72.870

EM Asia HFRIEMA Index 0.200 0.092 0.691 0.168 0.985 0.726 6.423 82.857

EM Global HFRIEMG Index 0.258 0.100 0.892 0.325 0.995 0.872 4.559 23.242

EM Latin Amer HFRIEMLA Index 0.173 0.093 0.598 0.068 0.968 0.620 8.782 323.473

Emerg Mkt HFRIEM Index 0.259 0.100 0.896 0.324 0.995 0.873 4.602 23.214

Equity Hedge HFRIEHI Index 0.196 0.092 0.681 0.158 0.984 0.715 6.608 92.752

Equity Neutral HFRIEMNI Index 0.413 0.099 1.432 0.866 1.000 0.997 1.817 4.176

Event Driven HFRIEDI Index 0.348 0.108 1.205 0.589 0.999 0.970 2.982 8.548

Fixed Asset-Back HFRIFIMB Index 0.657 0.153 2.276 1.405 1.000 1.000 1.706 2.749

Fixed Hig HFRIFIHY Index 0.283 0.120 0.980 0.294 0.991 0.875 5.513 22.716

Fund of Funds HFRIFOF Index 0.213 0.099 0.739 0.174 0.984 0.757 6.560 61.984

Macro HFRIMI Index 0.381 0.087 1.320 0.824 1.000 0.997 1.649 4.138

Mkt Defens HFRIFOFM Index 0.388 0.087 1.343 0.847 1.000 0.997 1.596 3.922

Mrg Arbit HFRIMAI Index 0.496 0.112 1.717 1.080 1.000 0.999 1.611 3.124

Multi-Strategy HFRIFI Index 0.361 0.138 1.252 0.468 0.996 0.943 4.426 12.118

Priv/Regulation HFRIREGD Index 0.225 0.082 0.780 0.312 0.997 0.837 4.083 31.061

Quant Direct HFRIENHI Index 0.146 0.090 0.506 -0.005 0.948 0.508 11.400 77398.739

Relative Value HFRIRVA Index 0.470 0.163 1.630 0.702 0.998 0.977 3.676 7.561

Russia-East Euro HFRICIS Index 0.278 0.104 0.964 0.369 0.996 0.900 4.303 18.285

Sec Energy HFRISEN Index 0.278 0.094 0.963 0.427 0.998 0.922 3.522 14.951

Sec Techno HFRISTI Index 0.067 0.086 0.231 -0.261 0.780 0.184 50.420 n/a

Short Bias HFRISHSE Index 0.043 0.086 0.148 -0.344 0.690 0.120 122.495 n/a

Strategic HFRIFOFS Index 0.149 0.091 0.517 -0.004 0.949 0.521 11.348 10935.740

Sys Diversified HFRIMTI Index 0.316 0.085 1.094 0.610 1.000 0.978 2.252 7.434

Wgt Comp HFRIFWI Index 0.287 0.097 0.994 0.441 0.998 0.929 3.515 13.974

Wgt Comp CHF HFRIFWIC Index 0.229 0.088 0.792 0.291 0.995 0.831 4.513 32.660

Wgt Comp GBP HFRIFWIG Index 0.181 0.093 0.626 0.097 0.974 0.653 7.986 194.050

Wgt Comp GBP HFRIFWIG Index 0.181 0.093 0.626 0.097 0.974 0.653 7.986 194.050

Wgt Comp JPY HFRIFWIJ Index 0.167 0.090 0.580 0.065 0.968 0.601 8.805 459.523

Yld Alternative HFRISRE Index 0.310 0.108 1.073 0.456 0.998 0.937 3.748 12.926
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Figure 13 – The Sharpe ratio Efficient Frontier (SEF) 

 

 

A Sharpe ratio Efficient Frontier can be derived in terms of optimal mean-variance combinations 

of risk-adjusted returns. 
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Figure 14 – Composition of the SEF for different  ̂  ̂(  ) values 

 

 

We can compute the capital allocations that deliver maximum Sharpe ratios for each confidence 

level. The difference with Markowitz’s Efficient Frontier is that SEF is computed on risk-

adjusted returns, rather than returns on capital 

 

 

 
Figure 15 – Composition of the Max PSR and Max SR portfolios 
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Figure 16 – Stats of Max PSR and Max SR portfolios 

 

 

Maximum PSR portfolios are risk-adjusted optimal, while maximum SR portfolios are risk-

adjusted suboptimal. The reason is, although a maximum SR portfolio may be associated with a 

high expected Sharpe ratio (point estimate), the confidence bands around that expectation may be 

rather wide. Consequently, maximum PSR portfolios are distributed closer to a Normal, and 

demand a lower MinTRL than maximum SR portfolios. 

 

 

 

 
Figure 17 – Mixture of Normal distributions that recover first four moments 

for the Max PSR and Max SR portfolios (parameters) 

 

 

 

Stat Max PSR Max SR

Average 0.0061 0.0060

StDev 0.0086 0.0073

Skew -0.2250 -1.4455

Kurt 2.9570 7.0497

Num 134 134

SR 0.7079 0.8183

StDev(SR) 0.1028 0.1550

An. SR 2.4523 2.8347

Low An. SR 1.8667 1.9515

PSR(0) 1.00000 1.00000

PSR(0.5) 1.00000 0.99999

MinTRL (0) 0.7152 1.1593

MinTRL (0.5) 1.0804 1.6695

Param. Dist.1 Dist.2 Param. Dist.1 Dist.2

Avg -0.0118 0.0069 Avg -0.0021 0.0077

StDev 0.0027 0.0078 StDev 0.0111 0.0047

Prob 0.0451 0.9549 Prob 0.1740 0.8260

Max SRMax PSR
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Figure 18(a) – Mixture of Normal distributions that recover the 

first four moments for the Max PSR 
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Figure 18(b) – Mixture of Normal distributions that recover the 

first four moments for the Max SR 
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DISCLAIMER 

 

The views expressed in this paper are those of the authors and not necessarily reflect those of 

Tudor Investment Corporation. No investment decision or particular course of action is 

recommended by this paper. 
 


